
ECED 3300
Tutorial 6

Problem 1

Determine the electrostatic potential V at a distance b away from the origin in the xy-plane due

to a finite line of length l charged with the density ρl. The line charge lies along the z−axis and

extends from z = −l/2 to z = l/2.

Solution

The superposition principle yields

V =
∫
L

dl ρl
4πε0|r− r′|

,

where r is the position of the observation point and r′ is the elementary charge location. It follows

from the geometry of the problem that

r = baρ, r′ = zaz.

Thus,

V =
∫ l/2

−l/2

dzρl
4πε0|baρ − zaz|

,

or simplifying,

V =
ρl

4πε0

∫ l/2

−l/2

dz√
b2 + z2

.

Using the table integral, ∫ dx√
x2 + a2

= ln(x+
√
x2 + a2) + const,

and the Newton-Leibnitz formula, we arrive at the final answer

V =
ρl

4πε0
ln

 l/2 +
√
b2 + l2/4

−l/2 +
√
b2 + l2/4

 .
Problem 2

A spherical conducting shell of radius a, centered at the origin, has a potential field

V =

 V0, r ≤ a,

V0a/r r > a

with the zero reference at infinity. Find the expression for the stored energy in this field.
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Solution

Consider the relation between the field and potential

E = −∇V.

In cylindrical coordinates,

∇V =
∂V

∂r
ar +

1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ.

It then follows that

E = −∇V =

 0 r ≤ a

V0a
r2

ar r > a

Hence, the energy is given by

WE = 1
2

∫
dvε0E

2 = ε0
2

∫ 2π

0
dφ
∫ π

0
dθ sin θ︸ ︷︷ ︸

4π

∫∞
a dr r2

(
V0a
r2

)2
= 2πε0V

2
0 a.

Problem 3

A conducting interface z = 0 separates a perfect conductor in the lower half-space, z < 0 and

a dielectric medium with permittivity ε, filling the upper half-space, z > 0. The electrostatic

potential distribution in the dielectric is given in spherical coordinates, V (r, θ, φ) = V0r cos θ√
r2+a2

,

where V0 and a are positive constants. Determine:

(a) The electric field E everywhere;

(b) The surface charge density induced on the interface.

Solution

(a) The field in the dielectric can be determined directly from the potential,

E = −∇V. (1)

It turns out to be convenient to transform the potential to cylindrical coordinates,

V =
V0z√

ρ2 + z2 + a2
. (2)

It then follows from Eqs. (2) and (1) that

E = −∂V
∂ρ

aρ +
∂V

∂z
az =

V0
(ρ2 + z2 + a2)3/2

[
zρaρ − (ρ2 + a2)az

]
.
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There is, of course, no field inside the conductor. Thus,

E =


V0

(ρ2+z2+a2)3/2
[zρaρ − (ρ2 + a2)az] , z > 0

0 z < 0.

(b) Using the boundary conditions at the dielectric-conductor interface,

Dz(ρ, z = 0) = ε0Ez(ρ, z = 0) = −ρs,

we obtain the sought surface charge density

ρs =
ε0V0√
ρ2 + a2

.

Problem 4
Two homogeneous dielectric regions z ≤ 0 (region 1) and z ≥ 0 (region 2) have dielectric con-

stants εr1 = 4 and εr2 = 2, respectively. Given the electric field E in region 1, E1 = ax+3ay+5az,

find the electric field E2 and the electric flux density D2 in region 2. You may leave your results in

terms of ε0.

Solution

The unit normal to the interface z = 0 between the two media is az. Hence, the normal and

tangential components of the electric field in region 1 are

E1n = (E · az)az = 5az,

E1t = E− (E · az)az = ax + 3ay.

The corresponding components of the electric field in region 2 are

E2n = αaz,

E2t = ax + 3ay.

Here α is an unknown constant, and the tangential component is the same due to the boundary

condition: E1t = E2t. The second boundary condition, D1n = D2n implies

5εr1 = αεr2,=⇒ α = 10.

Thus,

E2 = E2n + E2t = ax + 3ay + 10az,

and

D2 = ε0εr2E2 = 2ε0ax + 6ε0ay + 20ε0az.
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