ECED 3300
 Tutorial 6

Problem 1

Determine the electrostatic potential V at a distance b away from the origin in the xy-plane due to a finite line of length l charged with the density ρ_{l}. The line charge lies along the z-axis and extends from $z=-l / 2$ to $z=l / 2$.

Solution

The superposition principle yields

$$
V=\int_{L} \frac{d l \rho_{l}}{4 \pi \epsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

where \mathbf{r} is the position of the observation point and \mathbf{r}^{\prime} is the elementary charge location. It follows from the geometry of the problem that

$$
\mathbf{r}=b \mathbf{a}_{\rho}, \quad \mathbf{r}^{\prime}=z \mathbf{a}_{z}
$$

Thus,

$$
V=\int_{-l / 2}^{l / 2} \frac{d z \rho_{l}}{4 \pi \epsilon_{0}\left|b \mathbf{a}_{\rho}-z \mathbf{a}_{z}\right|},
$$

or simplifying,

$$
V=\frac{\rho_{l}}{4 \pi \epsilon_{0}} \int_{-l / 2}^{l / 2} \frac{d z}{\sqrt{b^{2}+z^{2}}} .
$$

Using the table integral,

$$
\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+\text { const }
$$

and the Newton-Leibnitz formula, we arrive at the final answer

$$
V=\frac{\rho_{l}}{4 \pi \epsilon_{0}} \ln \left(\frac{l / 2+\sqrt{b^{2}+l^{2} / 4}}{-l / 2+\sqrt{b^{2}+l^{2} / 4}}\right) .
$$

Problem 2

A spherical conducting shell of radius a, centered at the origin, has a potential field

$$
V=\left\{\begin{array}{cc}
V_{0}, & r \leq a \\
V_{0} a / r & r>a
\end{array}\right.
$$

with the zero reference at infinity. Find the expression for the stored energy in this field.

Solution

Consider the relation between the field and potential

$$
\mathbf{E}=-\nabla V
$$

In cylindrical coordinates,

$$
\nabla V=\frac{\partial V}{\partial r} \mathbf{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}
$$

It then follows that

$$
\mathbf{E}=-\nabla V=\left\{\begin{array}{cc}
0 & r \leq a \\
\frac{V_{0} a}{r^{2}} \mathbf{a}_{r} & r>a
\end{array}\right.
$$

Hence, the energy is given by

$$
W_{E}=\frac{1}{2} \int d v \epsilon_{0} E^{2}=\frac{\epsilon_{0}}{2} \underbrace{\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta}_{4 \pi} \int_{a}^{\infty} d r r^{2}\left(\frac{V_{0} a}{r^{2}}\right)^{2}=2 \pi \epsilon_{0} V_{0}^{2} a .
$$

Problem 3

A conducting interface $z=0$ separates a perfect conductor in the lower half-space, $z<0$ and a dielectric medium with permittivity ϵ, filling the upper half-space, $z>0$. The electrostatic potential distribution in the dielectric is given in spherical coordinates, $V(r, \theta, \phi)=\frac{V_{0} r \cos \theta}{\sqrt{r^{2}+a^{2}}}$, where V_{0} and a are positive constants. Determine:
(a) The electric field \mathbf{E} everywhere;
(b) The surface charge density induced on the interface.

Solution

(a) The field in the dielectric can be determined directly from the potential,

$$
\begin{equation*}
\mathbf{E}=-\nabla V \tag{1}
\end{equation*}
$$

It turns out to be convenient to transform the potential to cylindrical coordinates,

$$
\begin{equation*}
V=\frac{V_{0} z}{\sqrt{\rho^{2}+z^{2}+a^{2}}} \tag{2}
\end{equation*}
$$

It then follows from Eqs. (2) and (1) that

$$
\mathbf{E}=-\frac{\partial V}{\partial \rho} \mathbf{a}_{\rho}+\frac{\partial V}{\partial z} \mathbf{a}_{z}=\frac{V_{0}}{\left(\rho^{2}+z^{2}+a^{2}\right)^{3 / 2}}\left[z \rho \mathbf{a}_{\rho}-\left(\rho^{2}+a^{2}\right) \mathbf{a}_{z}\right]
$$

There is, of course, no field inside the conductor. Thus,

$$
\mathbf{E}=\left\{\begin{array}{cc}
\frac{V_{0}}{\left(\rho^{2}+z^{2}+a^{2}\right)^{3 / 2}}\left[z \rho \mathbf{a}_{\rho}-\left(\rho^{2}+a^{2}\right) \mathbf{a}_{z}\right], & z>0 \\
0 & z<0
\end{array}\right.
$$

(b) Using the boundary conditions at the dielectric-conductor interface,

$$
D_{z}(\rho, z=0)=\epsilon_{0} E_{z}(\rho, z=0)=-\rho_{s},
$$

we obtain the sought surface charge density

$$
\rho_{s}=\frac{\epsilon_{0} V_{0}}{\sqrt{\rho^{2}+a^{2}}}
$$

Problem 4

Two homogeneous dielectric regions $z \leq 0$ (region 1) and $z \geq 0$ (region 2) have dielectric constants $\epsilon_{r 1}=4$ and $\epsilon_{r 2}=2$, respectively. Given the electric field \mathbf{E} in region $1, \mathbf{E}_{1}=\mathbf{a}_{x}+3 \mathbf{a}_{y}+5 \mathbf{a}_{z}$, find the electric field \mathbf{E}_{2} and the electric flux density \mathbf{D}_{2} in region 2. You may leave your results in terms of ϵ_{0}.

Solution

The unit normal to the interface $z=0$ between the two media is \mathbf{a}_{z}. Hence, the normal and tangential components of the electric field in region 1 are

$$
\begin{gathered}
\mathbf{E}_{1 n}=\left(\mathbf{E} \cdot \mathbf{a}_{z}\right) \mathbf{a}_{z}=5 \mathbf{a}_{z} \\
\mathbf{E}_{1 t}=\mathbf{E}-\left(\mathbf{E} \cdot \mathbf{a}_{z}\right) \mathbf{a}_{z}=\mathbf{a}_{x}+3 \mathbf{a}_{y} .
\end{gathered}
$$

The corresponding components of the electric field in region 2 are

$$
\begin{gathered}
\mathbf{E}_{2 n}=\alpha \mathbf{a}_{z} \\
\mathbf{E}_{2 t}=\mathbf{a}_{x}+3 \mathbf{a}_{y}
\end{gathered}
$$

Here α is an unknown constant, and the tangential component is the same due to the boundary condition: $\mathbf{E}_{1 t}=\mathbf{E}_{2 t}$. The second boundary condition, $\mathbf{D}_{1 n}=\mathbf{D}_{2 n}$ implies

$$
5 \epsilon_{r 1}=\alpha \epsilon_{r 2}, \Longrightarrow \alpha=10
$$

Thus,

$$
\mathbf{E}_{2}=\mathbf{E}_{2 n}+\mathbf{E}_{2 t}=\mathbf{a}_{x}+3 \mathbf{a}_{y}+10 \mathbf{a}_{z},
$$

and

$$
\mathbf{D}_{2}=\epsilon_{0} \epsilon_{r 2} \mathbf{E}_{2}=2 \epsilon_{0} \mathbf{a}_{x}+6 \epsilon_{0} \mathbf{a}_{y}+20 \epsilon_{0} \mathbf{a}_{z}
$$

